Numerical Evaluation of P-multigrid Method for the Solution of Discontinuous Galerkin Discretizations of Diffusive Equations
نویسندگان
چکیده
This paper describes numerical experiments with P-multigrid to corroborate analysis, validate the present implementation, and to examine issues that arise in the implementations of the various combinations of relaxation schemes, discretizations and P-multigrid methods. The two approaches to implement P-multigrid presented here are equivalent for most high-order discretization methods such as spectral element, SUPG, and discontinuous Galerkin applied to advection; however it is discovered that the approach that mimics the common geometric multigrid implementation is less robust, and frequently unstable when applied to discontinuous Galerkin discretizations of diffusion. Gauss-Seidel relaxation converges ≈ 40% faster than block Jacobi, as predicted by analysis; however, the implementation of Gauss-Seidel is considerably more expensive that one would expect because gradients in most neighboring elements must be updated. A compromise quasi Gauss-Seidel relaxation method that evaluates the gradient in each element twice per iteration converges at rates similar to those predicted for true Gauss-Seidel.
منابع مشابه
Smoothed Aggregation Multigrid for the Discontinuous Galerkin Method
The aim of this paper is to investigate theoretically as well as experimentally an algebraic multilevel algorithm for the solution of the linear systems arising from the discontinuous Galerkin method. The smoothed aggregation multigrid, introduced by Vaněk for the conforming finite element method, is applied to low-order discretizations of convection-diffusion equations. For the elliptic model ...
متن کاملA note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations
In this note, we extend our recent work for the heat equation in [1] and compare numerically continuous Galerkin-Petrov (cGP) and discontinuous Galerkin (dG) time discretizations for the nonstationary Stokes equations in two dimensions. For the space discretization, we use the LBB-stable finite element pair Q2/P disc 1 and we discuss implementation aspects as well as methods for solving the res...
متن کاملMultigrid Algorithms for hp-Discontinuous Galerkin Discretizations of Elliptic Problems
We present W-cycle multigrid algorithms for the solution of the linear system of equations arising from a wide class of hp-version discontinuous Galerkin discretizations of elliptic problems. Starting from a classical framework in multigrid analysis, we define a smoothing and an approximation property, which are used to prove the uniform convergence of the W-cycle scheme with respect to the gra...
متن کاملNumerical Study of SUPG and LPS Methods Combined with Higher Order Variational Time Discretization Schemes Applied to Time-Dependent Linear Convection-Diffusion-Reaction Equations
This paper considers the numerical solution of time-dependent convection-diffusion-reaction equations. We shall employ combinations of streamlineupwind Petrov–Galerkin (SUPG) and local projection stabilization (LPS) meth-ods in space with the higher order variational time discretization schemes. In particular, we consider time discretizations by discontinuous Galerkin (dG) meth-ods and continuo...
متن کاملMultigrid algorithms for hp-version Interior Penalty Discontinuous Galerkin methods on polygonal and polyhedral meshes
In this paper we analyze the convergence properties of two-level and W-cycle multigrid solvers for the numerical solution of the linear system of equations arising from hp-version symmetric interior penalty discontinuous Galerkin discretizations of second-order elliptic partial differential equations on polygonal/polyhedral meshes. We prove that the two-level method converges uniformly with res...
متن کامل